培训课程

我们的“预测分析”系列面向在任何行业负责进行预测建模的专业人士。课程教材中会包括具有支付性能、时间、收入、数量和质量等级等度量的示例。 


 分析基础知识 

在这门基础课程中,您将学习如何使用 Minitab 尽可能缩短数据分析所需的时间。我们将介绍如何导入数据、开发可靠的统计方法来探索数据、创建和解释有吸引力的可视化内容及导出结果。您将探索如何使用最少量的用户输入自动进行 Minitab 分析,这将能节省时间! 我们将分析各种实际的数据集,以便您学习如何为自己的应用选择正确的分析工具并解释统计输出。此外,您还将学习重要统计概念(如假设检验和置信区间)的基础知识。  

本课程重点讲授如何基于业务、制造和事务过程中常用统计方法的实际应用做出可靠的决策。 

包括以下主题:

  • 导入数据和设置数据格式
  • Exec 宏
  • 条形图
  • 直方图
  • 箱线图
  • Pareto 图
  • 散点图
  • 位置和变异度量
  • t 检验
  • 等方差检验
  • 功效和样本数量 

前备课程: 无 


回归建模与预测 

准备好继续巩固在“分析基础知识”课程中讲授的基础统计分析概念?本课程教您如何使用统计建模工具探索和描述变量之间的关系。您将探索和描述数据中与时间效应及影响相关的特征,以及如何预测将来的行为。 

本课程将解释如何找出并量化输入变量对关键事件发生概率的影响。借助动手实践示例,您将学习建模工具如何帮助揭示哪些关键输入和来源导致数据中出现变异。 

包括以下主题:

  • 散点图
  • 相关
  • 简单线性回归
  • 时间序列工具(包括指数平滑)
  • 趋势分析
  • 分解
  • 多元和逐步回归
  • 二元逻辑回归
  • 回归验证 

前备课程:  分析基础知识 


机器学习 

本课程通过实际发生的问题示例来讲授如何探索和描述变量之间的关系,进而帮助您增强数据分析技能。您将学习使用受监督的机器学习技术(如 CART®),分析在历史数据中发现的模式,这可帮助您获得更深入的见解、识别潜在风险、寻求改进机会并预测未来情况。 

使用不受监督的机器学习工具(如 Clustering),检测数据中的自然分割,并将观测值或变量分组到同质集中。此外,还通过将原始数据变换为一组不相关的变量,对数据进行降维。

包括以下主题 :

  • 判别分析
  • 测试集验证
  • K 折叠验证
  • CART® 分类
  • 相关
  • CART® 回归
  • 聚类分析 

前备课程: 分析基础知识以及回归建模与预测 

培训课程

如果您想知道哪些课程适合自己、哪些课程会安排培训,请联系我们。