Gradient Boosting

TreeNet® Gradient Boosting is Salford Predictive Modeler’s most flexible and powerful data mining tool, capable of consistently generating extremely accurate models. The TreeNet modeling engine’s level of accuracy is usually not attainable by single models or by ensembles such as bagging or conventional boosting.

The TreeNet engine demonstrates remarkable performance for both regression and classification. The algorithm typically generates thousands of small decision trees built in a sequential error–correcting process to converge to an accurate model. The TreeNet modeling engine has been responsible for the majority of Minitab’s modeling competition awards.

Supreme Accuracy:

The TreeNet® modeling engine adds the advantage of a degree of accuracy usually not attainable by a single model or by ensembles such as bagging or conventional boosting. As opposed to neural networks, the TreeNet methodology is not sensitive to data errors and needs no time-consuming data preparation, pre-processing or imputation of missing values. This type of data error can be very challenging for conventional data mining methods and will be catastrophic for conventional boosting. In contrast, the TreeNet model is generally immune to such errors as it dynamically rejects training data points too much at variance with the existing model. The TreeNet modeling engine robustness extends to data contaminated with erroneous target labels.

Advanced Features:

Interaction detection establishes whether interactions of any kind are needed in a predictive model, and is a search engine discovering specifically which interactions are required. The interaction detection system not only helps improve model performance (sometimes dramatically) but also assists in the discovery of valuable new segments and previously 


Minitab products help businesses increase efficiency and
improve quality through smart data analysis.

Salford Predictive Modeler® 8
Minitab’s Integrated Suite of Machine Learning Software


SPM’s CART® modeling engine is the ultimate classification tree that has revolutionized the field of advanced analytics, and inaugurated the current era of data science.

Random Forests Logo

Random Forests®

Random Forests® is a modeling engine that leverages the power of multiple alternative analyses, randomization strategies, and ensemble learning.



The MARS® modeling engine is ideal for users who prefer results in a form similar to traditional regression while capturing essential nonlinearities and interactions.

TreeNet Logo


TreeNet® Gradient Boosting is SPM’s most flexible and powerful data mining tool, capable of consistently generating extremely accurate models.

Pricing Icon


Contact us for pricing information.

University Icon

University Program

Our University Program provides the SPM®, CART®, MARS®, TreeNet® , and Random Forests® modeling engines at significantly-reduced licensing fees to the educational community.

Automation Icon


70+ pre-packaged scenarios, basically experiments, inspired by how leading model analysts structure their work.