

Guide to the BASIC Programming Language

This guide provides an overview of the built-in BASIC
programming language available within SPM®.

 2

© 2019 Minitab, LLC. All Rights Reserved.

Minitab®, SPM®, SPM Salford Predictive Modeler®, Salford Predictive Modeler®,
Random Forests®, CART®, TreeNet®, MARS®, RuleLearner®, and the Minitab logo are
registered trademarks of Minitab, LLC in the United States and other countries.
Additional trademarks of Minitab, LLC can be found at www.minitab.com. All other
marks referenced remain the property of their respective owners.

www.minitab.com

Salford Predictive Modeler® Guide to the BASIC Programming Language

 3

BASIC Programming Language

Salford Predictive Modeler® (SPM) contains an integrated implementation of a complete BASIC

programming language for transforming variables, creating new variables, filtering cases, and database

programming. Because the programming language is directly accessible anywhere in SPM, you can

perform a number of database management functions without invoking the data step of another program.

The BASIC transformation language allows you to modify your input files on the fly while you are in an

analysis session. Permanent copies of your changed data can be obtained with the RUN command,

which does no modeling. BASIC statements are applied to the data as they are read from your dataset

and before any modeling takes place, allowing variables created or modified by BASIC to be used in the

same manner as unmodified variables on the input dataset.

Although this integrated version of BASIC is much more powerful than the simple variable transformation

functions sometimes found in other statistical procedures, it is not meant to be a replacement for more

comprehensive data steps found in statistics packages in general use. At present, integrated BASIC

does not permit the merging or appending of multiple files, nor does it allow processing across

observations. In SPM the programming work space for BASIC is limited and is intended for on-the-fly data

modifications of 20 to 40 lines of code. For more complex or extensive data manipulation, we recommend

you use your preferred database management software.

The remaining BASIC help topics describe what you can do with BASIC and provide simple examples to

get you started. The BASIC help topics provide formal technical definitions of the syntax.

Getting Started with BASIC Programming Language

Your BASIC program will normally consist of a series of statements that all begin with a “%” sign. (The

“%” sign can be omitted inside a "DATA block" described later.) These statements could comprise simple

assignment statements that define new variables, conditional statements that delete selected cases,

iterative loops that repeatedly execute a block of statements, and complex programs with the flow control

provided by GOTO statements and line numbers. Thus, somewhere before a model analysis command

such as CART GO, STATS or RUN, you might type:

% LET BESTMAN = WINNER

% IF MONTH=8 THEN LET GAMES = BEGIN

% ELSE IF MONTH>8 LET GAMES = ENDED

% LET ABODE = LOG (CABIN)

% DIM COLORS(10)

% FOR I= 1 TO 10 STEP 2

% LET COLORS(I) = Y * I

% NEXT

% IF SEX$="MALE" THEN DELETE

The % symbol appears only once at the beginning of each line of BASIC code; it should not be repeated

anywhere else on the line. You can leave a space after the % symbol or you can start typing immediately;

BASIC will accept your code either way.

Our programming language uses standard statements found in many dialects of BASIC.

Salford Predictive Modeler® Guide to the BASIC Programming Language

 4

BASIC: Overview of BASIC Components

LET

Assigns a value to a variable. The form of the statement is:

% LET variable = expression

IF...THEN

Evaluates a condition, and if it is true, executes the statement following the THEN. The form is:

% IF condition THEN statement

ELSE

Can immediately follow an IF...THEN statement to specify a statement to be executed when the

preceding IF condition is false. The form is:

% IF condition THEN statement

% ELSE statement

Alternatively, ELSE may be combined with other IF–THEN statements:

% IF condition THEN statement

% ELSE IF condition THEN statement

% ELSE IF condition THEN statement

% ELSE statement

FOR...NEXT

Allows for the execution of the statements between the FOR statement and a subsequent NEXT

statement as a block. The form of the simple FOR statement is:

% FOR

% statements

% NEXT

For example, you might execute a block of statements only if a condition is true, as in

%IF WINE=COUNTRY THEN FOR

%LET FIRST=CABERNET

%LET SECOND=RIESLING

%NEXT

When an index variable is specified on the FOR statement, the statements between the FOR and NEXT

statements are looped through repeatedly while the index variable remains between its lower and upper

bounds:

Salford Predictive Modeler® Guide to the BASIC Programming Language

 5

% FOR [index variable and limits]

% statements

% NEXT

The index variable and limits form is:

%FOR I= start-number TO stop-number [STEP = stepsize]

where I is an integer index variable that is increased from start-number to stop-number in increments of

stepsize. The statements in the block are processed first with I = start-number, then with I = start-number

+ stepsize, and repeated until I >=stop-number. If STEP=stepsize is omitted, the default is to step by 1.

Nested FOR–NEXT loops are not allowed.

DIM

Creates an array of subscripted variables. For example, a set of five scores could be set up with:

% DIM SCORE(5)

This creates the variables SCORE(1), SCORE(2), –, SCORE(5).

The size of the array must be specified with a literal integer up to a maximum size of 99; variable names

may not be used. You can use more than one DIM statement, but be careful not to create so many large

arrays that you exceed the maximum number of variables allowed (currently 32000).

DELETE

Deletes the current case from the data set.

Operators

The table below lists the operators that can be used in BASIC statement expressions. Operators are

evaluated in the order they are listed in each row with one exception: a minus sign before a number

(making it a negative number) is evaluated after exponentiation and before multiplication or division. The

"<>" is the "not equal" operator.

Numeric Operators () ^ * / + -

Relational Operators < <= <> = => >

Logical Operators AND OR NOT

Salford Predictive Modeler® Guide to the BASIC Programming Language

 6

BASIC Special Variables

BASIC has five built-in variables available for every data set. You can use these variables in BASIC

statements and create new variables from them. You may not redefine them or change their values

directly.

Variable Definition Values

CASE observation number 1 to maximum observation

number

BOF logical variable for

beginning of file

1 for first record in file,

0 otherwise

EOF logical variable for

end of file

1 for last record in file,

0 otherwise

BASIC Mathematical Functions

Integrated BASIC also has a number of mathematical and statistical functions. The statistical functions

can take several variables as arguments and automatically adjust for missing values. Only numeric

variables may be used as arguments. The general form of the function is:

FUNCTION(variable, variable, ….)

Integrated BASIC also includes a collection of probability functions that can be used to determine

probabilities and confidence level critical values, and to generate random numbers.

Multiple-Argument Functions

 Function Definition Example

 AVG arithmetic mean %LET XMEAN=AVG(X1,X2,X3)

 MAX maximum %LET BEST=MAX(Y1,Y2,Y3,Y4,Y5)

 MIN minimum %LET MINCOST=MIN(PRICE1,OLDPRICE)

 MIS number of missing values

 STD standard deviation

 SUM summation

Salford Predictive Modeler® Guide to the BASIC Programming Language

 7

Single-Argument Functions

 Function Definition Example

 ABS absolute value %ABSVAL=ABS(X)

 ACS arc cosine

 ASN arc sine

 ATH arc hyperbolic tangent

 ATN arc tangent

 COS cosine

 EXP exponential

 LOG natural logarithm %LET LOGXY=LOG(X+Y)

 SIN sine

 SQR square root %LET PRICESR=SQR(PRICE)

 TAN tangent

The following shows the distributions and any parameters that are needed to obtain values for either the

random draw, the cumulative distribution, the density function, or the inverse density function. Every

function name is composed of three letters:

Key-Letter:

 This first letter identifies the distribution.

Distribution-Type Letters:

 RN (random number), CF (cumulative),

 DF (density), IF (inverse).

BASIC Probability Functions

CART BASIC also includes a collection of probability functions that can be used to determine probabilities

and confidence level critical values, and to generate random numbers.

The following table shows the distributions and any parameters that are needed to obtain values for the

random draw, the cumulative distribution, the density function, or the inverse density function. Every

function name is composed of two parts:

The "Key" (first) letter identifies the distribution ᶲ.

Salford Predictive Modeler® Guide to the BASIC Programming Language

 8

Remaining letters define function: RN (random number), CF (cumulative), DF (density), IF (inverse).

Distribution

Key-

Letter

Random

Draw (RN)

Cumulative

(C)

Density (D)

Inverse (I)

Comments

(ᶲ is the probability for

inverse density function)

--

Beta B BRN BCF(β,p,q) β = beta value

 BDF(β,p,q) p,q = beta parameters

 BIF(ᶲ,p,q)

--

Binomial N NRN(n,p) NCF(x,n,p) n = number of trials

 NDF(x,n,p) p = prob of success in trial

 NIF(ᶲ,n,p) x = binomial count

--

Chi-square X XRN(df) XCF(χ 2,df) χ2 = chi-squared valued

 XDF(χ 2,df) f = degrees of freedom

 XIF(ᶲ,df)

--

Exponential E ERN ECF(x) x = exponential value

 EDF(x)

EIF(ᶲ)

--

F F FRN(df1,df

2)

FCF(F,df1,df2) df1, df2 = degrees of

freedom

 FDF(F,df1,df2) F = F-value

 FIF(ᶲ,df1,df2)

--

Gamma G GRN(p) GCF(γ,p) p = shape parameter

 GDF(γ,p) γ = gamma value

 GIF(ᶲ,p)

--

Logistic L LRN LCF(x) x = logistic value

 LDF(x)

 LIF(ᶲ)

--

Normal

(Standard)

Z ZRN ZCF(z) z = normal z-score

 ZDF(z)

 ZIF(ᶲ)

--

Poisson P PRN(p) PCF(x,p) p = Poisson parameter

 PDF(x,p) x = Poisson value

 PIF(ᶲ,p)

--

Studentized S SRN(k,df) SCF(s,k,df) k = parameter

 SDF(s,k,df) f = degrees of freedom

 SIF(ᶲ,k,df)

--

Salford Predictive Modeler® Guide to the BASIC Programming Language

 9

--

t T TRN(df) TCF(t,df) df = degrees of freedom

 TDF(t,df) t = t-statistic

 TIF(ᶲ,df)

--

Uniform U URN UCF(x) x = uniform value

 UDF(x)

 UIF(ᶲ)

--

Weibull W WRN(p,q) WCF(x,p,q) p = scale parameter

 WDF(x,p,q) q = shape parameter

 WIF(ᶲ,p,q)

--

These functions are invoked with either 0, 1, or 2 arguments as indicated in the table above, and return a

single number, which is either a random draw, a cumulative probability, a probability density, or a critical

value for the distribution.

We illustrate the use of these functions with the chi-square distribution. To generate 10 random draws

from a chi-square distribution with 35 degrees of freedom for each case in your data set:

% DIM CHISQ(10)

% FOR I= 1 TO 10

% LET CHISQ(I)=XRN(35)

% NEXT

To evaluate the probability that a chi-square variable with 20 degrees of freedom exceeds 27.5:

%LET CHITAIL = 1 - XCF(27.5, 20)

The chi-square density for the same chi-square value is obtained with:

%LET CHIDEN = XDF(27.5, 20)

Finally, the 5% point of the chi-squared distribution with 20 degrees of freedom is calculated with:

%LET CHICRIT = XIF(.95, 20)

Missing Values

The system missing value is stored internally as the largest negative number allowed. Missing values in

BASIC programs and printed output are represented with a period or dot ("."), and missing values can be

generated and their values tested using standard expressions.

Salford Predictive Modeler® Guide to the BASIC Programming Language

 10

Thus, you might type:

%IF NOSE=LONG THEN LET ANSWER=.

%IF STATUS=. THEN DELETE

Missing values are propagated so that most expressions involving variables that have missing values will

themselves yield missing values.

One important fact to note: because the missing value is technically a very large negative number, the

expression X < 0 will evaluate as true if X is missing.

BASIC statements included in your command stream are executed when a "Hot Command" such as

CART GO, STATS, SCORE GO, or RUN is encountered; thus, they are processed before any model

estimation or scoring is attempted. This means that any new variables created in BASIC are available for

use in MODEL and KEEP statements, and any cases that are deleted via BASIC will not be used in the

analysis.

More Examples

It is easy to create new variables or change old variables using BASIC. The simplest statements create a

new variable from other variables already in the data set. For example:

% LET PROFIT=PRICE *QUANTITY2* LOG(SQFTRENT), 5*SQR(QUANTITY)

BASIC allows for easy construction of Boolean variables, which take a value of 1 if true and 0 if false. In

the following statement, the variable XYZ would have a value of 1 if any condition on the right-hand side

is true, and 0 otherwise.

% LET XYZ = X1<.5 OR X2>17 OR X3=6

Suppose your data set contains variables for gender and age, and you want to create a categorical

variable with levels for male-senior, female-senior, male-non-senior, and female-non-senior. You might

type:

% IF GENDER$ = "" OR AGE = . THEN LET NEWVAR = .

% ELSE IF GENDER$ = "Male" AND AGE < 65 THEN LET NEWVAR=1

% ELSE IF GENDER$ = "Male" AND AGE >= 65 THEN LET NEWVAR=2

% ELSE IF GENDER$ = "Female" AND AGE < 65 THEN LET NEWVAR=3

% ELSE LET NEWVAR = 4

Salford Predictive Modeler® Guide to the BASIC Programming Language

 11

If the measurement of several variables changed in the middle of the data period, conversions can be

easily made with the following:

% IF YEAR > 1986 OR MEASTYPE$ = "OLD" THEN FOR

% LET TEMP = (OLDTEMP - 32) / 1.80

% LET DIST = OLDDIST / .621

% NEXT

% ELSE FOR

% LET TEMP = OLDTEMP

% LET DIST = OLDDIST

% NEXT

If you would like to create powers of a variable (square, cube, etc.) as independent variables in a

polynomial regression, you could type something like:

% DIM AGEPWR(5)

% FOR I = 1 TO 5

% LET AGEPWR(I) = AGE^I

% NEXT

Filtering the Data Set or Splitting the Data Set

Integrated BASIC can be used for flexibly filtering observations. To remove observations with SSN

missing, try:

% IF SSN= . THEN DELETE

To delete the first 10 observations, type:

% IF CASE <= 10 THEN DELETE

Because you can construct complex Boolean expressions with BASIC, using programming logic

combined with the DELETE statement gives you far more control than is available with the simple

SELECT statement. For example:

% IF AGE>50 OR INCOME<15000 OR (REGION=9 AND GOLF=.) THEN DELETE

It is often useful to draw a random sample from a data set to fit a problem into memory or to speed up a

preliminary analysis. By using the uniform random number generator in BASIC, this is easily

accomplished with a one-line statement:

% IF URN < .5 THEN DELETE

Salford Predictive Modeler® Guide to the BASIC Programming Language

 12

The data set can be divided into an analysis portion and a separate test portion distinguished by the

variable TEST:

% LET TEST = URN < .4

This sets TEST equal to 1 in approximately 40% of all cases and 0 in all other cases. The following

draws a stratified random sample taking 10% of the first stratum and 50% of all other strata:

% IF DEPVAR = 1 AND URN < .1 THEN DELETE

% ELSE IF DEPVAR<>1 AND URN < .5 THEN DELETE

Salford Predictive Modeler® Guide to the BASIC Programming Language

 13

Randomly Partitioning Data

SPM modeling techniques make extensive use of test and holdout samples, when they are available. The

learn sample consists of those records used to build the model. The test sample is typically used to

evaluate the model after it has been built, and may also be used to determine a best "pruning" of the

model if there are several to choose from. The holdout sample is completely independent, it has no effect

on how the model is built or pruned and is used exclusively to measure how the model performs

predictively.

A common technique for establishing these samples is simply to take a random percentage of the

available data, say 20% (which is the default that TreeNet® uses, by the way), and set this aside as a test

sample. This can be done easily, as in this example which partitions the data with 25% test and 20%

holdout (with the remaining 55% as learn):

PARTITION TEST=0.25, HOLDOUT=0.20

Perhaps you instead want only 30% of females but only 10% of men to be placed in the test sample. The

following example would implement this:

%let test = 0

%if gender$ = "Male" and urn > 0.90 then let test=1

%else if gender$ = "Female" and urn > 0.70 then let test = 1

partition sepvar = test

Suppose you wanted to establish a 25% test and 20% holdout partitioning but ensure that, in the course

of building a series of models, records assigned to the test sample in the first model were guaranteed to

be assigned to the test sample in all the models, and similarly for the holdout sample. An easy way to

accomplish this is by creating a "learn/test partitioning variable" and adding it permanently to your

dataset. The following example takes a uniform random draw between 0 and 1, assigns the top 25% to

the test sample (lth=1), the next 20% to the holdout sample (lth=-1) and the remaining 55% to the learn

sample (lth=0):

use "original_data.csv"

%let lth = urn

%if lth > 0.75 then let lth = 1

%else if lth > 0.55 and lth <= 0.75 then let lth = -1

%else let lth = 0

save "partitioned_data.csv"

run

By using the partitioned version of your dataset, you can then build a series of models across which the

test and holdout samples are consistently defined (if that is important to your analysis):

use "partitioned_data.csv"

partition sepvar = lth

model target

cart go

treenet go

rf go

gps go

mars go

Salford Predictive Modeler® Guide to the BASIC Programming Language

 14

DATA Blocks

A DATA block is a block of statements appearing between a DATA command and a DATA END

command. These statements are treated as BASIC statements, even though they do not start with “%.”

Here is an example:

DATA

let ranbeta1=brn(.25,.75)

let ranbeta2=brn(.75,.25)

let ranbin1=nrn(100,.25)

let ranbin2=nrn(500,.75)

let ranchi1=xrn(1)

let ranchi2=xrn(2)

DATA END

Advanced Programming Features

Integrated BASIC also allows statements to have line numbers that facilitate the use of flow control with

GOTO statements. Line numbers must be integers less than 32000, and we recommend that if you use

any line numbers at all, all your BASIC statements should be numbered. BASIC will execute the

numbered statements in the order of the line numbers, regardless of the order in which the statements

are typed, and unnumbered BASIC statements are executed before numbered statements.

Here is an example of using the GOTO:

%10 IF PARTY=GOP THEN GOTO 96

%20 LET NEWDEM=1

%30 LET VEEP$="GORE"

%40 GOTO 99

%96 LET VEEP$="KEMP"

%99 LET CAMPAIGN=1

BASIC Programming Language Commands

The following pages contain a summary of the BASIC programming language commands. They include

syntax usage and examples.

Salford Predictive Modeler® Guide to the BASIC Programming Language

 15

DELETE Statement

Purpose

Drops the current case from the data set.

Syntax

% DELETE

% IF condition THEN DELETE

Examples

To keep a random sample of 75% of a data set for analysis:

% IF URN < .25 THEN DELETE

Salford Predictive Modeler® Guide to the BASIC Programming Language

 16

DIM Statement

Purpose

Creates an array of subscripted variables.

Syntax

% DIM var(n)

where n is a literal integer. Variables of the array are then referenced by variable name and subscript,

such as var(1), var(2), etc.

In an expression, the subscript can be another variable, allowing these array variables to be used in

FOR…NEXT loop processing. See the section on the FOR…NEXT statement for more information.

Examples

% DIM QUARTER(4)

% DIM MONTH(12)

% DIM REGION(9)

Salford Predictive Modeler® Guide to the BASIC Programming Language

 17

ELSE Statement

Purpose

Follows an IF...THEN to specify statements to be executed when the condition following a preceding IF is

false.

Syntax

The simplest form is:

% IF condition THEN statement1

% ELSE statement2

The statement2 can be another IF…THEN condition, thus allowing IF…THEN statements to be linked into

more complicated structures. For more information see the section for IF…THEN.

Examples

% 5 IF TRUE=1 THEN GOTO 20

% 10 ELSE GOTO 30

% IF AGE <=2 THEN LET AGEDES$ = "baby"

% ELSE IF AGE <= 18 THEN LET AGEDES$ = "child"

% ELSE IF AGE < 65 THEN LET AGEDES$ = "adult"

% ELSE LET AGEDES$ = "senior"

Salford Predictive Modeler® Guide to the BASIC Programming Language

 18

FOR...NEXT Statement

Purpose

Allows the processing of steps between the FOR statement and an associated NEXT statement as a

block. When an optional index variable is specified, the statements are looped through repetitively while

the value of the index variable is in a specified range.

Syntax

The form is:

% FOR [index variable and limits]

% statements

% NEXT

The index variable and limits is optional, but if used, it is of the form

x = y TO z [STEP=s]

where x is an index variable that is increased from y to z in increments of s. The statements are

processed first with x = y, then with x = y + s, and so on until x= z. If STEP=s is omitted, the default is to

step by 1.

Remarks

Nested FOR…NEXT loops are not allowed and a GOTO which is external to the loop may not refer to a

line within the FOR…NEXT loop. However, GOTOs may be used to leave a FOR...NEXT loop or to jump

from one line in the loop to another within the same loop.

Examples

To have an IF…THEN statement execute more than one statement if it is true:

% IF X<15 THEN FOR

% LET Y=X+4

% LET Z=X-2

% NEXT

Salford Predictive Modeler® Guide to the BASIC Programming Language

 19

GOTO Statement

Purpose

Jumps to a specified numbered line in the BASIC program.

Syntax

The form for the statement is:

% GOTO ##

where ## is a line number within the BASIC program.

Remarks

This is often used with an IF…THEN statement to allow certain statements to be executed only if a

condition is met.

If line numbers are used in a BASIC program, all lines of the program should have a line number. Line

numbers must be positive integers less than 32000.

Examples

% 10 GOTO 20

% 20 STOP

% 10 IF X=. THEN GOTO 40

% 20 LET Z=X*2

% 30 GOTO 50

% 40 LET Z=0

% 5O STOP

Salford Predictive Modeler® Guide to the BASIC Programming Language

 20

IF. . . THEN Statement

Purpose

Evaluates a condition and, if it is true, executes the statement following the THEN.

Syntax

% IF condition THEN statement

An IF…THEN may be combined with an ELSE statement in two ways. First, the ELSE may be simply

used to provide an alternative statement when the condition is not true:

% IF condition THEN statement1

% ELSE statement2

Second, the ELSE may be combined with an IF…THEN to link conditions:

% IF condition THEN statement

% ELSE IF condition2 THEN statement2

To allow multiple statements to be conditionally executed, combine the IF…THEN with a FOR...NEXT:

% IF condition THEN FOR

% statement

% statement

% NEXT

Examples

To remove outlier cases from the data set:

% IF ZCF(ABS((z-zmean)/zstd))>.95 THEN DELETE

Salford Predictive Modeler® Guide to the BASIC Programming Language

 21

LET Statement

Purpose

Assign a value to a variable.

Syntax

The form of the statement is:

% LET variable = expression

The expression can be any mathematical expression, or a logical Boolean expression. If the expression
is Boolean, then the variable defined will take a value of 1 if the expression is true or 0 if it is false. The
expression may also contain logical operators such as AND, OR and NOT.

Examples

% LET AGEMONTH = YEAR - BYEAR + 12*(MONTH , BMONTH)

% LET SUCCESS =(MYSPEED = MAXSPEED)

% LET COMPLETE = (OVER = 1 OR END=1)

Salford Predictive Modeler® Guide to the BASIC Programming Language

 22

STOP Statement

Purpose

Stops the processing of the BASIC program on the current observation. The observation is kept but any

BASIC statements following the STOP are not executed.

Syntax

The form of the statement is:

% STOP

Examples

%10 IF X = 10 THEN GOTO 40

%20 ELSE STOP

%40 LET X = 15

